Automating
Instruction-Set Extension
for Embedded Processor Customisation

Laura Pozzi
With:

K. Atasu P. Biswas, A. Peymandoust, D. Jain,
. lenne, N. Dutt, G. De Micheli

™ csda

Processor Architecture Laboratory (LAP)

& Centre for Adv ci)ﬂﬂ Systems (CSDA)

LY TECHMICUE
Ill'rLH".LLL"I.L'I.l'.'-'L NE

Swiss Federal Institute of Technology Lausanne (EPFL)

Automatic Processor Specialisation:
How Application and HW Meet Today

Application Application

\/\/\/

Dedicated Hardware Software

Design Gap!

Standard Processor

+++ Highest performance - Lowest performance
——— Long time to market ++ Besttime to market
—— Mo field changes ++ Any field changes

Automatic Processor Specialisation:
How HW Should Meet Applications

Application

Software

=oftware:

Application

Versafile but inefficient Softhﬁ\f

P

Standard Processor

- Lowest performance
++ Bestiime to market
++ Any field changes

Harcware:

Customised Processor

Fast but rigid Embedded!

++ Wery high performance
+ Good fime o market
+ Any field changes

QOutline

e Introduction to Instruction Set Extension (ISE)

e Our proposal for solving the problem automatically
e Set of algorithms
e Different flavours of the ISE problem

e Open research issues

e Conclusions

Instruction Set Extensions

IN1 IN2 IN3

e Collapse a subset of the
Direct Acyclic Graph
nodes into a single
Functional Unit (AFU)

e Exploit cheaply the
parallelism within the basic
block

e Simplify operations with
constant operands

e Optimise sequences of
instructions (logic,
arithmetic, etc.)

e e e Exploit limited precision

out3 = H{in1, in2, in3, in4, in3)

AFU

Automatic Instruction-Set Extensions

Automatic ldentification of
Instruction-Set Extensions

Atasu, Pozzi, Ienne — DAC 2003 (Best Paper)
Biswas, Pozzi, Ienne, Dutt, et al. — DAC 2004
Biswas, Pozzi, Ienne, Dutt, et al. — DATE 2005

J Symbolic Algebra for
Instruction Selection

\ Peymandoust, Pozzi, Ienne,
MEM De Micheli — ASAP 2003

Motivational Example and Goal

e Goal: Find subgraphs

e having a user
defined maximum
number of inputs
and outputs,

e including
disconnected
components, and

e that maximize the
overall speedup

e that are close to
manual solutions

Existing Solutions Miss Potential Speed-ups
e Typical approach (I)

Find freguent patterns

e Typically rather small

e Might have too man¥ inputs or
outputs for register file

e Reuse is not a good heuristic
for high speedup

E.g., ChoiJun99, KastnerOct02,
ArnoldApr01

e Typical approach
(11

Grow clusters until 1I/0
violation occurs

e Limits possibilities, only
connected

e Usually only single output

Our Goal

...

e M1 for 2-1
e M2 for 3-1
e M2+M3 for 4-3

Problem Statement

G; (V, E) are the graphs representing the DAGs of the
algorithm basic blocks

S is a subgraph of G

M(S) reﬁresents the gain achievable by implementing the
subgraph S as a special instruction

Problem: Find the A, subgraphs S;of any G;such that
> M(S;) > max
j J

Under the following constraints for each subgraphs 5;
e Number of inputs of 5, </,
e Number of outputs of 5; <N,
e 5;is convex

Identification Algorithms

1 2 3/4

Single Subgraph Multiple Subgraphs (e.g., 2) Multiple Subgraphs (e.g., 3)
Single Basic Block Single Basic Block Multiple Basic Blocks

Single Subgraph within a Single Basic Block

e A graph with N nodes has 2N subgraphs

e Potential solutions are in fact rather sparse

How to avoid exploring unnecessarily
the whole design space?

Search Space Pruning

e Based on a violation of the e Based on a violation of the
output port constraint convexity constraint

N i
3
™~
1

e Based on a violation of the
iInput port constraint

Search tree construction

| | 0000
e e G 1 Moool ~~
level 1-- - - - - -~ -~ - -~ —~ ="~ - T ____
0 1 0100 0 1 1100
level 2----- - - @ mmmm e e @ - ——---
;] 0010 ;] 0110 ;] 1010 ;] 1110
level 3- - ~---- g AN~ gepgye; S AN e L AN —

o/v1 Oo/\1 O/VT O/ Oo/v1 O/A1 O/\1 0 O/ WA
leveld-/- @ -- - @ -"-@--"-@---"-@--"-"@&-/'-@ --'-@ - -

Search tree pruning

Topologically
sorted graph!

level) - - - - ----------—- e e B
level 1 - - - - - - - - - - - - == T T oo o
0 1
level 2 - - - - - - — &= - - g T
0 1 0 1
level3 ----¢-----@----f£---
0/+1 0/yv1 0O/ 1
level4 ---L-@--- — —
® passed X failed O not considered

for Nout = 2

Subgraphs Considered

Current Algorithm Performance

1e+08 , — -
| / -
1e+07 dac03 + ! P b
|| current| X F :
1e+06 | NZ ———————— A = o Y 1
N — p A :
100000 20 ———— 7 Lt N i
L i il ‘x
10000 i S :
: // i g JJ/(—Y'%WX y
1000 | A ﬁfxy ’ ki
100 | +++><§X§§g>é”§f‘; X i
) ,/?ﬂ€P S X X]
WF s fox B0 i E
A K K XK
1 i 2 : st . s o]
10 100

Number of Graph Nodes (N)

Number of subgraphs considered
for Nin=4 and Nout=2

Identlﬂcatlon Results

M1

M2

adpcmdecode

21

\

M1

61

—

M2

22 32 62

33 63 44

4 \\
M2+M3
M1+M3

66

W lterative
O Clubbing
0 MaxMISO

3.5

15

Results

fft

2-1

3-1

4-1

O Sequences
B MaxMISO
O Clubbing

O Iterative

H Genetic

Results

bezier

@ Sequences

B MaxMISO
O Clubbing
O lterative

B Genetic

3-1 41 6-1 3-2 4-2 6-2 4-3 6-3 6-4 8-4

And what about Memory?

e Large share of system energy spent in memory

e Many techniques known for improving caches

e Drowsy caches, Cool caches, Zero-compression
caches, Filter caches, Software-controlled caches, etc.

e Can processor specialisation help?

e Reduce Instruction Fetches (< one of the reasons
of lower additional power cost than performance

gain)
e And in Data Memory?

Introducing LD/ST in ISE

e Typical situation #1: constant tables
e Encoding and quantisation tables
e Cryptography substitution tables (5-Boxes)

Introducing LD/ST in ISE

e Typical situation #2: Loop-carried dependencies

i
Q\@ G+ G+
, Ea Ba ex2]
BB2 : g i G / G,
5
o= 1@ ||)
>
6 | |
T Bl S5 5 ol e
! A variation of the previous
e Instruction-Set Extension identification

Speedup Results

Speedup (2-1)

EOriginal

- avsme | e Tangible advantage of

OReadOnlyTab

including Architecturally

Visible State Registers

and Read Only Tables
e S o e ® g g e Advantage is often more
than cumulative for the
Speedup (4-2) two types of memory
I e Advantage is in some cases

. more pronounced for

L S R W A G A ¢

ode o
adpc™ ’cadpcﬂ\ _ge¢

limited bandwidth

register files (e.qg., 2-1 vs
Mol | -

heS aut°°'0° qiter®

pezie’

Energy Savings in the D-Cache

Benchmark Ha'ro‘cfvcvgsrze'f';gl - Ach_eCs:Ceﬁ ein % Energy Saving
AES 16,408 21,859 34
adpcm_encoder 295,188 443,892 32
adpcm_decoder 295,188 591,412 26
bezier 48,004,004 61,208,005 35
viterbi 2,160,000 72,183,000 2

e Energy cost of accessing caches estimated for a direct mapped

32kbyte cache (lowest energy)

e Energy cost of accessing hardware tables estimated as ASIC

SRAMs

Open Issues: Generic Memory within
AFUs

e Of course the read-only table inclusion in AFUs is a
first step towards ‘generic memory within AFUS’

e Ideally, when there is *reuse* of memory space
(e.g., vector elements) within a loop body, it would
be advisable to read-in such vectors once in the
AFU, and then write them out once, if needed

e Can use the theory of scratchpad memory
allocation, which is a very similar problem

Open Issues: Region Formation

We are efficiently finding ISEs within BBs.

Sometimes BB enlargement is needed in order to match
designer expectations
Techniques we have found useful, after application study:
e If-conversion
e Loop unrolling
e Function inlining

The question is when and how much

Probably typical heuristics:
e Only ‘hot-enough’ spots
e Only ‘small-enough’ loop-bodies / functions

(but 'small-enough” means hw area now, not
Ssw instructions)

Open Issues: Recurrence

e Our problem formulations so far search for the
best AFU in a basic block, without caring for
recurrence

e \What about recurrence?

e - subgraph isomorphism

BB 1

BB 2

Conclusions and current work

DACO3 has good formulation and results, but is exponential in
worst case; limited to 100 nodes

Recent improvements to the above algorithm have brought
adgllitional pruning and made it deal with up to 1000-1200
nodes

DACO04 proposes automated inclusion of read-only tables or
loop carried dependent scalar variables in AFUs, plus it
proposes a heuristics based on genetic algorithms

DATE 05 proposes a heuristics based on the K-L partitioning
algorithm, which is more efficient than a previous genetic
formulation

Current work is exploring

e Region formation and generic memory inclusion, for furthering
the reach of our ISE algorithms

e AFU recurrence — area constraintk

Algorithm Performance

Ta+14 —
basicbl:Hd:E +
NAG -eememem]

1e+12 i s -
©
D
()] la+10
O
1)) et
S 1e+38 .i_._,.-"F'ff

o
@ -
£ a6 - e g
3 T
51 S v Rt
o w000 - L d-"'ﬂfﬁj e |
: __d_.--"' - -= e
a | et ol
100 | i e =¥_!E ol
SR -
i H{.’----:_;_,mr'
1 10 100

Number of Graph Nodes (N)

Number of subgraphs considered
using an output port constraint of two

