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Automatic Processor Specialisation:
How Application and HW Meet Today
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Automatic Processor Specialisation:
How HW Should Meet Applications

Application

Software

=oftware:
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QOutline

e Introduction to Instruction Set Extension (ISE)

e Our proposal for solving the problem automatically
e Set of algorithms
e Different flavours of the ISE problem

e Open research issues

e Conclusions



Instruction Set Extensions

IN1 IN2 IN3

e Collapse a subset of the
Direct Acyclic Graph
nodes into a single
Functional Unit (AFU)

e Exploit cheaply the
parallelism within the basic
block

e Simplify operations with
constant operands

e Optimise sequences of
instructions (logic,
arithmetic, etc.)

e e e Exploit limited precision

out3 = H{in1, in2, in3, in4, in3)

AFU




Automatic Instruction-Set Extensions

Automatic ldentification of
Instruction-Set Extensions

Atasu, Pozzi, Ienne — DAC 2003 (Best Paper)
Biswas, Pozzi, Ienne, Dutt, et al. — DAC 2004
Biswas, Pozzi, Ienne, Dutt, et al. — DATE 2005

J Symbolic Algebra for
Instruction Selection

\ Peymandoust, Pozzi, Ienne,
MEM De Micheli — ASAP 2003




Motivational Example and Goal

e Goal: Find subgraphs

e having a user
defined maximum
number of inputs
and outputs,

e including
disconnected
components, and

e that maximize the
overall speedup

e that are close to
manual solutions




Existing Solutions Miss Potential Speed-ups
e Typical approach (I)

Find freguent patterns

e Typically rather small

e Might have too man¥ inputs or
outputs for register file

e Reuse is not a good heuristic
for high speedup

E.g., ChoiJun99, KastnerOct02,
ArnoldApr01

e Typical approach
(11

Grow clusters until 1I/0
violation occurs

e Limits possibilities, only
connected

e Usually only single output




Our Goal

...................................................

e M1 for 2-1
e M2 for 3-1
e M2+M3 for 4-3




Problem Statement

G; (V, E) are the graphs representing the DAGs of the
algorithm basic blocks

S is a subgraph of G

M(S) reﬁresents the gain achievable by implementing the
subgraph S as a special instruction

Problem: Find the A, subgraphs S;of any G;such that
> M(S;) > max
j J

Under the following constraints for each subgraphs 5;
e Number of inputs of 5, </,
e Number of outputs of 5; <N,
e 5;is convex




Identification Algorithms

1 2 3/4

Single Subgraph Multiple Subgraphs (e.g., 2) Multiple Subgraphs (e.g., 3)
Single Basic Block Single Basic Block Multiple Basic Blocks




Single Subgraph within a Single Basic Block

e A graph with N nodes has 2N subgraphs

e Potential solutions are in fact rather sparse

How to avoid exploring unnecessarily
the whole design space?



Search Space Pruning

e Based on a violation of the e Based on a violation of the
output port constraint convexity constraint

N i
3
™~
1

e Based on a violation of the
iInput port constraint




Search tree construction
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Search tree pruning

Topologically
sorted graph!
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Subgraphs Considered

Current Algorithm Performance
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Identlﬂcatlon Results
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Results
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And what about Memory?

e Large share of system energy spent in memory

e Many techniques known for improving caches

e Drowsy caches, Cool caches, Zero-compression
caches, Filter caches, Software-controlled caches, etc.

e Can processor specialisation help?

e Reduce Instruction Fetches (< one of the reasons
of lower additional power cost than performance

gain)
e And in Data Memory?



Introducing LD/ST in ISE

e Typical situation #1: constant tables
e Encoding and quantisation tables
e Cryptography substitution tables (5-Boxes)







Introducing LD/ST in ISE

e Typical situation #2: Loop-carried dependencies
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Speedup Results

Speedup (2-1)
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Energy Savings in the D-Cache

Benchmark Ha'ro‘cfvcvgsrze'f';gl - Ach_eCs:Ceﬁ ein % Energy Saving
AES 16,408 21,859 34
adpcm_encoder 295,188 443,892 32
adpcm_decoder 295,188 591,412 26
bezier 48,004,004 61,208,005 35
viterbi 2,160,000 72,183,000 2

e Energy cost of accessing caches estimated for a direct mapped

32kbyte cache (lowest energy)

e Energy cost of accessing hardware tables estimated as ASIC

SRAMs




Open Issues: Generic Memory within
AFUs

e Of course the read-only table inclusion in AFUs is a
first step towards ‘generic memory within AFUS’

e Ideally, when there is *reuse* of memory space
(e.g., vector elements) within a loop body, it would
be advisable to read-in such vectors once in the
AFU, and then write them out once, if needed

e Can use the theory of scratchpad memory
allocation, which is a very similar problem



Open Issues: Region Formation

We are efficiently finding ISEs within BBs.

Sometimes BB enlargement is needed in order to match
designer expectations
Techniques we have found useful, after application study:
e If-conversion
e Loop unrolling
e Function inlining

The question is when and how much

Probably typical heuristics:
e Only ‘hot-enough’ spots
e Only ‘small-enough’ loop-bodies / functions

(but 'small-enough” means hw area now, not
Ssw instructions)



Open Issues: Recurrence

e Our problem formulations so far search for the
*best* AFU in a basic block, without caring for
recurrence

e \What about recurrence?

e - subgraph isomorphism

BB 1

BB 2




Conclusions and current work

DACO3 has good formulation and results, but is exponential in
worst case; limited to 100 nodes

Recent improvements to the above algorithm have brought
adgllitional pruning and made it deal with up to 1000-1200
nodes

DACO04 proposes automated inclusion of read-only tables or
loop carried dependent scalar variables in AFUs, plus it
proposes a heuristics based on genetic algorithms

DATE 05 proposes a heuristics based on the K-L partitioning
algorithm, which is more efficient than a previous genetic
formulation

Current work is exploring

e Region formation and generic memory inclusion, for furthering
the reach of our ISE algorithms

e AFU recurrence — area constraintk



Algorithm Performance
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