
AutomatingAutomating
InstructionInstruction--Set ExtensionSet Extension

for Embedded Processor for Embedded Processor CustomisationCustomisation

Laura Pozzi
With:

K. Atasu, P. Biswas, A. Peymandoust, D. Jain,
P. Ienne, N. Dutt, G. De Micheli

Processor Architecture Laboratory (LAP)
& Centre for Advanced Digital Systems (CSDA)

Swiss Federal Institute of Technology Lausanne (EPFL)

csdacsda

Automatic Processor Specialisation:Automatic Processor Specialisation:
How Application and HW Meet TodayHow Application and HW Meet Today

Design Gap!

Automatic Processor Specialisation:Automatic Processor Specialisation:
How HW Should Meet ApplicationsHow HW Should Meet Applications

Embedded!

OutlineOutline

Introduction to Instruction Set Extension (ISE)

Our proposal for solving the problem automatically
Set of algorithms

Different flavours of the ISE problem

Open research issues

Conclusions

Instruction Set ExtensionsInstruction Set Extensions

Collapse a subset of the
Direct Acyclic Graph
nodes into a single
Functional Unit (AFU)

Exploit cheaply the
parallelism within the basic
block

Simplify operations with
constant operands

Optimise sequences of
instructions (logic,
arithmetic, etc.)

Exploit limited precision

Automatic InstructionAutomatic Instruction--Set ExtensionsSet Extensions

Symbolic Algebra for
Instruction Selection
Peymandoust, Pozzi, Ienne,

De Micheli – ASAP 2003

Automatic Identification of
Instruction-Set Extensions

Atasu, Pozzi, Ienne – DAC 2003 (Best Paper)

Biswas, Pozzi, Ienne, Dutt, et al. – DAC 2004

Biswas, Pozzi, Ienne, Dutt, et al. – DATE 2005

Motivational Example and GoalMotivational Example and Goal

Goal: Find subgraphs
having a user
defined maximum
number of inputs
and outputs,

including
disconnected
components, and

that maximize the
overall speedup

that are close to
manual solutions

Existing Solutions Miss Potential SpeedExisting Solutions Miss Potential Speed--upsups
Typical approach (I)

Find frequent patterns
Typically rather small
Might have too many inputs or
outputs for register file
Reuse is not a good heuristic
for high speedup

E.g., ChoiJun99, KastnerOct02,
ArnoldApr01

Typical approach
(II)

Grow clusters until I/O
violation occurs
Limits possibilities, only
connected
Usually only single output

Our GoalOur Goal

M1 for 2-1

M2 for 3-1

M2+M3 for 4-3

Problem StatementProblem Statement
Gi (V, E) are the graphs representing the DAGs of the
algorithm basic blocks

S is a subgraph of G

M(S) represents the gain achievable by implementing the
subgraph S as a special instruction

Problem: Find the Ninstr subgraphs Sj of any Gi such that

Under the following constraints for each subgraphs Sj
Number of inputs of Sj ≤ Nin

Number of outputs of Sj ≤ Nout

Sj is convex

∑ →
j jSM max)(

Identification AlgorithmsIdentification Algorithms

1
Single Subgraph

Single Basic Block

2
Multiple Subgraphs (e.g., 2)

Single Basic Block

3/4
Multiple Subgraphs (e.g., 3)

Multiple Basic Blocks

Single Single SubgraphSubgraph within a Single Basic Blockwithin a Single Basic Block

A graph with N nodes has 2N subgraphs

Potential solutions are in fact rather sparse

How to avoid exploring unnecessarily
the whole design space?

Search Space PruningSearch Space Pruning
Based on a violation of the
output port constraint

Based on a violation of the
convexity constraint

Based on a violation of the
input port constraint

Search tree constructionSearch tree construction

Search tree pruningSearch tree pruning

Topologically
sorted graph!

for Nout = 2

Current Algorithm PerformanceCurrent Algorithm Performance

Number of Graph Nodes (N)

Number of subgraphs considered
for Nin=4 and Nout=2

Su
bg

ra
ph

s
Co

ns
id

er
ed

Identification ResultsIdentification Results

M1
M2 M1+M3

M2+M3

ResultsResults
fft

1

1.5

2

2.5

3

3.5

 2-1 3-1 4-1 6-1 3-2 4-2 6-2 4-3 6-3 6-4 8-4

Sp
ee

du
p Sequences

MaxMISO
Clubbing
Iterative
Genetic

ResultsResults
bezier

1

1.5

2

2.5

3

3.5

 2-1 3-1 4-1 6-1 3-2 4-2 6-2 4-3 6-3 6-4 8-4

Sp
ee

du
p

Sequences
MaxMISO
Clubbing
Iterative
Genetic

And what about Memory?And what about Memory?

Large share of system energy spent in memory

Many techniques known for improving caches
Drowsy caches, Cool caches, Zero-compression
caches, Filter caches, Software-controlled caches, etc.

Can processor specialisation help?
Reduce Instruction Fetches (one of the reasons
of lower additional power cost than performance
gain)

And in Data Memory?

Introducing LD/ST in ISEIntroducing LD/ST in ISE

Typical situation #1: constant tables
Encoding and quantisation tables

Cryptography substitution tables (S-Boxes)

AES

Move tables closer to the coreMove tables closer to the core

Main
Memory

Cache

Register File

FU

Scratchpad

Register File

FU

Cache

Main
Memory

Cache

Register File

AFU

Scratchpad

Main
Memory

Introducing LD/ST in ISEIntroducing LD/ST in ISE

Typical situation #2: Loop-carried dependencies

adpcm
A variation of the previous

Instruction-Set Extension identification

0

1

2

3

4

5

6

7

8

9

adpcm_coder

adpcm_decoder AES
autcor00

viterbi
bezier

Speedup (4-2)

Original

AVState

ReadOnlyTab

Both

Speedup ResultsSpeedup Results

Tangible advantage of
including Architecturally
Visible State Registers
and Read Only Tables
into ISEs

Advantage is often more
than cumulative for the
two types of memory

Advantage is in some cases
more pronounced for
limited bandwidth
register files (e.g., 2-1 vs
4-2)

0

1

2

3

4

5

6

adpcm_coder

adpcm_decoder
AES

autcor00
viterbi

bezier

Speedup (2-1)

Original

AVState

ReadOnlyTab

Both

Energy Savings in the DEnergy Savings in the D--CacheCache

Energy cost of accessing caches estimated for a direct mapped
32kbyte cache (lowest energy)

Energy cost of accessing hardware tables estimated as ASIC
SRAMs

272,183,0002,160,000viterbi

3561,208,00548,004,004bezier

26591,412295,188adpcm_decoder

32443,892295,188adpcm_encoder

3421,85916,408AES

% Energy SavingAccesses in
D-Cache

Accesses in
Hardware TablesBenchmark

Open Issues: Generic Memory within Open Issues: Generic Memory within
AFUsAFUs

Of course the read-only table inclusion in AFUs is a
first step towards ‘generic memory within AFUs’

Ideally, when there is *reuse* of memory space
(e.g., vector elements) within a loop body, it would
be advisable to read-in such vectors once in the
AFU, and then write them out once, if needed

Can use the theory of scratchpad memory
allocation, which is a very similar problem

Open Issues: Region FormationOpen Issues: Region Formation
We are efficiently finding ISEs within BBs.

Sometimes BB enlargement is needed in order to match
designer expectations

Techniques we have found useful, after application study:
If-conversion
Loop unrolling
Function inlining

The question is when and how much

Probably typical heuristics:
Only ‘hot-enough’ spots
Only ‘small-enough’ loop-bodies / functions

(but ‘small-enough’ means hw area now, not
sw instructions)

Open Issues: RecurrenceOpen Issues: Recurrence

BB 2BB 1

Our problem formulations so far search for the
best AFU in a basic block, without caring for
recurrence

What about recurrence?

subgraph isomorphism

Conclusions and current workConclusions and current work
DAC03 has good formulation and results, but is exponential in
worst case; limited to 100 nodes

Recent improvements to the above algorithm have brought
additional pruning and made it deal with up to 1000-1200
nodes

DAC04 proposes automated inclusion of read-only tables or
loop carried dependent scalar variables in AFUs, plus it
proposes a heuristics based on genetic algorithms

DATE 05 proposes a heuristics based on the K-L partitioning
algorithm, which is more efficient than a previous genetic
formulation

Current work is exploring
Region formation and generic memory inclusion, for furthering
the reach of our ISE algorithms
AFU recurrence – area constraintk

Algorithm PerformanceAlgorithm Performance

Number of subgraphs considered
using an output port constraint of two

Number of Graph Nodes (N)

Su
bg

ra
ph

s
Co

ns
id

er
ed

